After the Ice Videos
This video series shares stories of Indigenous communities challenged by sea ice loss in Alaska’s Bering Sea. “After the Ice” is a three-part series created through a partnership between the Bering Sea Elders Group and SEARCH. Click here for the videos.
Arctic Futures 2050 Conference
State of the Science Briefs
- How is diminishing Arctic sea ice influencing coastal communities? (PDF - 979 KB)
- How are melting Arctic sea ice and land ice linked to sea-leval rise? (PDF - 206 KB)
- How fast is the Greenland ice-sheet melting? (PDF - 134 KB)
- Climate Change and the Permafrost Carbon Feedback (PDF - 700 KB)
- How is diminishing Arctic sea ice influencing lower-latitude weather patterns? (PDF - 393 KB)
- How is diminishing Arctic sea ice influencing marine ecosystems? (PDF - 185 KB)
- What do we know about the future of Arctic sea ice loss? (PDF - 335 KB)
- How is land ice changing in the Arctic, and what is the influence on sea level? (PDF - 880 KB)
- How does land motion influence sea level rise? (PDF - 270 KB)
- How fast is sea level rising? (PDF - 289 KB)
- Can extreme Arctic climate change be avoided with cost effective mitigation? (429 KB)
2017 Methane Workshop Reports and Publications
- A meeting report of the International Workshop to Reconcile Methane Budgets in the Northern Permafrost Region was published in Eos on 11 July 2017.
- The final workshop report was released 9 March 2017.
- A paper synthesizing current knowledge and gaps in Arctic methane emissions was published in Eos on 13 March 2018.
2015 Permafrost Article Published in Nature
Led by Ted Schuur, Permafrost Action Team Chair, and incorporating many previous and ongoing synthesis activities of the Permafrost Carbon Network, the Climate Change and the Permafrost Carbon Feedback review article was published by Nature in April of 2015 (doi:10.1038/nature14338). The review outlined the current state of knowledge about the impact of thawing permafrost carbon on climate in a future warmer world.
Listen to Sue Natali, one of the Nature article's co-authors, discuss the significant role that Arctic permafrost carbon release plays in global climate change on PRI's Living on Earth program here.
2015 Arctic Observing Framework
The drafting of this proposed Arctic Observing framework was co-led by Hajo Eicken, chair the SEARCH Science Steering Committee (SSC), and Craig Lee, chair of the SEARCH Observing Change Panel (OCP), with input from the SEARCH Science Steering Committee, SEARCH Observing Change Panel and SEARCH Science Office. The paper proposes an Integrated Arctic Observing System organized though a framework of “Arctic Services” to better combine the different roles that AON would play for agencies supporting basic research, those with operational missions, as well as non-governmental entities and stakeholders. The full framework document as well as a summary brief are provided below.
Arctic Observing Framework Summary (PDF - 126 KB)
Arctic Observing Framework (PDF - 784 KB)
2015 Arctic Observing Network Position Paper
This brief position paper was led by Craig Lee, chair of the SEARCH Observing Change Panel (OCP), with input from both the OCP, SEARCH SSC, ARCUS, and via a call for input from the broader community. The paper represents a synthesis of discussions within SEARCH over the previous year and builds on past SEARCH-AON community events and workshops. Key issues addressed in the paper include governance, network integration, and sustained funding. More information: http://www.arcus.org/search-program/aon
Download Final Position Paper (PDF - 165 KB)
National Science Foundation Response to SEARCH's 2015 AON Position Paper (PDF - 31KB)
2014 Arctic Observing System Framework White Paper
This 5-page white paper summarizes a potential implementation framework for a sustained US Arctic Observing System. The white paper includes discussion of how to set priorities, strategy, tactics, and operational implementation.
Download White Paper (PDF - 806 KB)
2012 U.S. Arctic Observing Network Coordination Workshop Report
Payne, J., D. Perovich, R. Shnoro, and H. Wiggins, eds., 2013: U.S. Arctic Observing Network Coordination Workshop Report. Study of Environmental Arctic Change (SEARCH), Fairbanks, Alaska, 52pp.
Download Full Report (PDF - 3 MB)
Download Front Matter and Executive Summary (PDF - 1.3 MB)
AON Design and Implementation (ADI) Task Force Final Report 2012
AON Design and Implementation Task Force. Designing, Optimizing, and Implementing an Arctic Observing Network (AON): A Report by the AON Design and Implementation (ADI) Task Force (2012). Study of Environmental Arctic Change (SEARCH), Fairbanks, AK. 64 pp.
Download Full Report (PDF - 2.4 MB)
Download Front Matter and Executive Summary (PDF - 395 KB)
2012 Recommendations for Understanding Arctic System Change
This white paper, "Recommendations for Understanding Arctic System Change" was based on a workshop held 2010 and subsequent discussions to identify key unknowns and key science questions for understanding arctic system change; and identify the next steps in synthesis activities, methodologies, mechanisms, and approaches to address the identified key science questions.
Editors: Scott Elliott, Joshua Schimel, John Walsh, Helen Wiggins
Download Report (PDF - 283 KB)
2009 AON Status Report and Key Recommendations
Arctic Observing Network (AON): 2009 Status Report and Key Recommendations. Results from the Third AON PI Meeting; 30 November - 2 December 2009; Boulder, CO. 170 pp. (Released August 2010).
Download Full Report (PDF - 7.5 MB)
Download Front Matter and Executive Summary (PDF - 2.9 MB)
Arctic Observation Integration: Workshops Report. 2008.
Fairbanks, Alaska: SEARCH Project Office, Arctic Research Consortium of the United States (ARCUS).
Download Full Report (PDF - 700 KB)
SEARCH Data Policy
In 2007, a SEARCH Data Working Group developed a SEARCH Data Policy to guide the documentation and distribution of SEARCH-related datasets.
Download Data Policy (PDF - 108 KB)
Study of Environmental Arctic Change: Plans for Implementation During the International Polar Year and Beyond.
Report of the SEARCH Implementation Workshop, May 23 - 25, 2005.
Download Full Report (107 pages, 5.9MB - PDF)
Download Full Report: A4 International Size (107 pages, 5.9MB - PDF)
Download Front Matter and Executive Summary (16 pages, 641K - PDF)
Download Front Matter and Executive Summary: A4 International Size (16 pages, 722K - PDF)
This report is a synthesis of community-wide planning discussions before, during and after the SEARCH Implementation Workshop, which was convened to establish priorities for the next steps of the implementation of SEARCH. The report is meant to serve as a point of reference for immediate planning in preparation for the International Polar Year and for an Arctic Observing Network, and also to provide a perspective on SEARCH beyond the immediate needs and priorities.
Proceedings of the SEARCH Open Science Meeting
27-30 October 2003, Seattle, Washington.
Download Full Volume (370 pages, 2.3MB - PDF)
Download Full Volume: A4 International Size (370 pages, 1.3MB - PDF)
Download Front Matter and Session Summaries (33 pages, 770KB - PDF)
Download Front Matter and Session Summaries: A4 International Size (33 pages, 300KB - PDF)
These proceedings present the evidence of rapid environmental change in the Arctic discussed during the 2003 SEARCH Open Science Meeting.
SEARCH Brochure
SEARCH: The Study of Environmental Arctic Change: A four page brochure.
Download the SEARCH Brochure (PDF - 1.4 MB)
SEARCH: The Study of Environmental Arctic Change, a brochure published by the Arctic Research Consortium of the U.S. for the SEARCH Interagency Working Group and the Interagency Arctic Research Policy Committee, is now available.
At the request of John Calder, head of the Arctic Research Office of the National Oceanic and Atmospheric Administration, and through the Cooperative Institute for Arctic Research (CIFAR) at the University of Alaska Fairbanks, ARCUS developed this short informational brochure to introduce the SEARCH program, a major new interagency arctic research effort, to a general audience.
Nine federal agencies with research interests and responsibilities in the Arctic will cooperate to carry out the SEARCH program. The SEARCH brochure is designed for use by agency representatives to present their research activities and the collaborative activities supported by SEARCH and to inform the public of the impact of SEARCH activities in assessing and understanding the scope of global climate change.
The brochure consists of four pages, featuring each agency's SEARCH activities and an overall description of the purpose, activities and plans for SEARCH. The brochure is available as a downloadable PDF from the ARCUS web site.
Other Reports and Science Plans
Various other reports and science plans, including the SEARCH Science Plan (2001) and the Implementation Strategy (2003) can be found by clicking here.
Witness The Arctic Articles
Witness the Arctic is a newsletter of the Arctic Research Consortium of the United States (ARCUS) typically published three times per year. The newsletter serves an audience of Arctic scientists, educators, agency personnel, and policy makers and provides information on current Arctic research efforts and findings, significant research initiatives, science education, national policy affecting Arctic research, and related international activities. SEARCH program updates and articles are a regular feature of each publication.
- Study of Environmental Arctic Change (SEARCH) Update (Spring 2016 Issue 2)
- Study of Environmental Arctic Change (SEARCH) Update (Winter 2016 Issue 1)
- SEARCH Brings Essential Coordination to Interdisciplinary Arctic Science: Observations from the SEARCH Executive Director (Fall 2015 Issue 3)
- Study of Environmental Arctic Change (SEARCH) Update (Fall 2015 Issue 3)
- Study of Environmental Arctic Change (SEARCH) Update (Spring 2015 Issue 2)
- Study of Environmental Arctic Change (SEARCH) Update (Winter 2015 Issue 1)
- Study of Environmental Arctic Change (SEARCH) Update (Fall 2014 Issue 3)
- Sea Ice Prediction has Easy and Difficult Years (Spring 2014 Issue 2)
- Brief SEARCH Update (Spring 2014 Issue 2)
- Study of Environmental Arctic Change (SEARCH) News (Winter 2014 Issue 1)
- Study of Environmental Arctic Change (SEARCH) News (Fall 2013 Issue 3)
- Local and Traditional Knowledge Stewardship: Managing Data and Information from the Arctic (Spring 2013 Issue 2)
- Study of Environmental Arctic Change (SEARCH) News (Spring 2013 Issue 2)
- SEARCH Updates (Winter 2013 Issue 1)
- A Conversation with Dr. Neil Swanberg, NSF Arctic System Science Program Director (Fall 2012 Issue 3)
- Study of Environmental Arctic Change (SEARCH) Progress and Activities (Fall 2012 Issue 3)
- Arctic Observing Network Design and Implementation Workshop Planned (Spring 2012 Issue 2)
- U.S. Arctic Observing Coordination Workshop Held in March (Spring 2012 Issue 2)
- Early-Release Data on Ice Thickness, Snow Depth, and Ice Characteristics (Spring 2012 Issue 2)
- 2012 Sea Ice Outlook and Sea Ice for Walrus Outlook Launched (Spring 2012 Issue 2)
- SEARCH Encourages Proposals to the Arctic Science, Engineering, and Education for Sustainability (ArcSEES) Opportunity (Spring 2012 Issue 2)
- Community Input Into SEARCH 5-Year Goals and Objectives (Spring 2012 Issue 2)
- In Remembrance of Dr. Deanna Kingston (Winter 2012 Issue 1)
- SEARCH Meeting Advances New SEARCH Goals and Implementation Strategy (Winter 2012 Issue 1)
- A Conversation with Mark Serreze and Jim Moore, Principal Investigators for the Advanced Cooperative Arctic Data and Information Service (ACADIS) (Fall 2011 Issue 3)
- NSF’s New Data Management System for Arctic Research Programs (Fall 2011 Issue 3)
- SEARCH Progress and News (Fall 2011 Issue 3)
- SEARCH Updates (Spring 2011 Issue 2)
- SEARCH at the American Geophysical Union Fall Meeting (Winter 2011 Issue 1)
- Science Steering Committee Meeting Refines Future Directions for SEARCH (Winter 2011 Issue 1)
- State of the Arctic Conference Resolution Released (Fall 2011 Issue 1)
- New SEARCH Science Steering Committee (SSC) Chair (Fall 2010 Issue 1)
- New SEARCH Science Steering Committee (SSC) Chair (Fall 2010 Issue 1)
- Understanding Arctic Change Workshop Held in Seattle (Fall 2010 Issue 1)
- Arctic Observing Network Report Released (Fall 2010 Issue 1)
- State of the Arctic Conference Highlights Interdisciplinary, System-Scale Science (Fall 2010 Issue 1)
- AON Design and Implementation Task Force Formed (Winter 2009 Issue 4)
- Sea Ice Outlook: 2009 Summary Reports and Plans for 2010 (Winter 2009 Issue 4)
- SEARCH and ARCSS Form Joint “Understanding Arctic Change” Task Force (Winter 2009 Issue 4)
- 2009 Arctic Observing Network Awards (Fall 2009 Issue 3)
- NSF Awards $35 Million in AON Projects (Fall 2009 Issue 3)
- 2009 SEARCH Sea Ice Outlook Effort Underway (Spring 2009 Issue 2)
SEARCH Affiliated Publications by Topic
Arctic Observing
2015
Lee, O., H. Eicken, G. Kling, and C. Lee. (2015). A Framework for Prioritization, Design and Coordination of Arctic Long-term Observing Networks: A Perspective from the U.S. SEARCH Program, Arctic, 68(5).
SEARCH (2015). Arctic Services: A Framework for Effective and Sustained Observations in the Arctic. Arctic Research Consortium of the United States (ARCUS). Fairbanks, AK.
SEARCH (2015). Community Position Paper: Arctic Observing Network (AON). Arctic Research Consortium of the United States (ARCUS). Fairbanks, AK.
2014
SEARCH (2014). Towards a Sustained US Arctic Long-term Observing System: Perspectives from the Study of Environmental Arctic Change (SEARCH) Program. Arctic Research Consortium of the United States (ARCUS). Fairbanks, AK.
2013
Payne, J., D. Perovich, R. Shnoro, and H. Wiggins, eds. (2013). U.S. Arctic Observing Network Coordination Workshop Report. Study of Environmental Arctic Change (SEARCH). Fairbanks, Alaska, 52pp.
2012
AON Design and Implementation Task Force [ADI]. (2012). Designing, Optimizing, and Implementing an Arctic Observing Network (AON): A Report by the AON Design and Implementation (ADI) Task Force. Study of Environmental Arctic Change (SEARCH), Fairbanks, AK. 64 pp
SEARCH. (2012) Recommendations for Understanding Arctic System Change. SEARCH Project Office, Arctic Research Consortium of the United States (ARCUS). Fairbanks, AK
2011
Eicken, H., Forbes, B. and H. Wiggins. (2011). State of the Arctic Conference 2010: International Perspectives on Progress of Research Responsive to Decision-Makers' Information Needs, Ambio, vol. 40, pp. 824-827, 2011.
2008
SEARCH (2008). Arctic Observation Integration Workshops Report, 63pp. pp. SEARCH Project Office, Arctic Research Consortium of the United States (ARCUS). Fairbanks, AK
2005
SEARCH. (2005). Proceedings of the SEARCH Open Science Meeting, 27–30 October 2003, Seattle, Washington. Fairbanks: Arctic Research Consortium of the U.S. (ARCUS).
SEARCH (2005). Study of Environmental Arctic Change: Plans for implementation during the International Polar Year and beyond. Report of the SEARCH Implementation Workshop, May 23-25, 2005. Arctic Research Consortium of the United States (ARCUS). Fairbanks, AK.
2001
SEARCH (2001). SEARCH: Study of Environmental Arctic Change, science plan. Polar Science Center, Applied Physics Laboratory, University of Washington, Seattle.
Cross-cutting topics
2021
Kelly, B.P. and E. Francis. in press. Arctic Climate: the Context of Change. In M. Sfraga. The Arctic’s 7 Cs. Wilson Center.
Huntington, H.P. 2021. Choices, Choices. Pages 177-184 in P. Wassmann (ed.). Wither the Arctic Ocean?; Research,Knowledge Needs, and Development en Route to the New Arctic. Fundación BBVA. Bilbao, Spain. ISBN: 978-84-92937-82-0.
Kelly, B.P. and A.M. Fisher. 2021. Complex Collaboration Tools for a Sustainable Arctic. Pages 43-51 in P. Wassmann (ed.).Wither the Arctic Ocean?; Research, Knowledge Needs, and Development en Route to the New Arctic. Fundación BBVA. Bilbao, Spain. ISBN: 978-84-92937-82-0.
Weise, F.K. 2021. Why did the Arctic not collapse? Page 229-240 in P. Wassmann (ed.). Wither the Arctic Ocean?; Research,Knowledge Needs, and Development en Route to the New Arctic. Fundación BBVA. Bilbao, Spain. ISBN: 978-84-92937-82-0.
Zdor, E. and H.P. Huntington. 2021. Tradition connects the past, present, and future of the Arctic Ocean. Page 195-204 in P. Wassmann (ed.). Wither the Arctic Ocean?; Research, Knowledge Needs, and Development en Route to the New Arctic. Fundación BBVA. Bilbao, Spain. ISBN: 978-84-92937-82-0.
2020
Fisher, A. M., B. P. Kelly, and G. W. Kling (eds.). 2020. Arctic Futures 2050 Conference Report. 48pp. Study of Environmental Arctic Change. doi:10.6084/m9.figshare.12148770.
Kelly, B.P. 2020. Defining Problems in the Face of Urgency: Climate Change and the Arctic. Georgetown Journal ofInternational Affairs. June 1, 2020. https://gjia.georgetown.edu/2020/06/01/defining-problems-in-the-face-of…
2018
Miller, S. M., M. A. Taylor, and J. D. Watts. (2018). Understanding high-latitude methane in a warming climate. Eos, 99. https://doi.org/10.1029/2018EO091947.
2016
Cao X, Aiken GR, Spencer RGM, Butler K, Mao J, Schmidt-Rohr K (2016) Novel insights from NMR spectroscopy into seasonal changes in the composition of dissolved organic matter exported to the Bering Sea by the Yukon River. Geochimica Et Cosmochimica Acta, 181, 72-88.doi:10.1016/j.gca.2016.02.029
2014
Aiken GR, Spencer RGM, Striegl RG, Schuster PF, Raymond PA (2014) Influences of glacier melt and permafrost thaw on the age of dissolved organic carbon in the Yukon River basin. Global Biogeochemical Cycles, 8, 2013GB004764.
Sea Ice
2017
SEARCH Sea Ice Action Team. (2017). Workshop Report: First SEARCH Knowledge Exchange Workshop on Impacts of Arctic Sea-Ice Loss. Study of Environmental Arctic Change (SEARCH), Fairbanks, AK.
2016
Hamilton, L. C., & Stroeve, J. (2016). 400 predictions: the SEARCH Sea Ice Outlook 2008–2015. Polar Geography, 1–14. https://doi.org/10.1080/1088937X.2016.1234518
2014
Stroeve, J., Hamilton, L. C., Bitz, C. M., & Blanchard-Wrigglesworth, E. (2014). Predicting September sea ice: Ensemble skill of the SEARCH Sea Ice Outlook 2008-2013. Geophysical Research Letters, 41(7), 2411–2418. https://doi.org/10.1002/2014GL059388
Permafrost
2018
Burke EJ, Chadburn SE, Huntingford C, Jones CD (2018) CO2 loss by permafrost thawing implies additional emissions reductions to limit warming to 1.5 or 2 °C. Environmental Research Letters, 13, 24024. https://doi.org/10.1088/1748-9326/aaa138
Christiansen CT, Lafreniére MJ, Henry GHR, Grogan P (2018) Long-term deepened snow promotes tundra evergreen shrub growth and summertime ecosystem net CO2 gain, but reduces soil carbon and nutrient pools. Global Change Biology. doi: 10.1111/gcb.14084
Couture NJ, Irrgang A, Pollard W, Lantuit H, Fritz M Coastal Erosion of Permafrost Soils Along the Yukon Coastal Plain and Fluxes of Organic Carbon to the Canadian Beaufort Sea. Journal of Geophysical Research: Biogeosciences. doi: 10.1002/2017JG004166
Dean JF, van der Velde Y, Garnett MH, Dinsmore K, Baxter R, Lessels JS, Smith P, Street LE, Subke JA, Tetzlaff D, Washbourne I, Wookey PA, Billett MF (2018) Abundant pre-industrial carbon detected in Canadian Arctic headwaters: implications for the permafrost carbon feedback. Environmental Research Letters, 13, 34024. https://doi.org/10.1088/1748-9326/aaa1fe
Estop-Aragonés C, Cooper MDA, Fisher JP, Thierry A, Garnett MH, Charman DJ, Murton JB, Phoenix GK, Treharne R, Sanderson NK, Burn CR, Kokelj S V, Wolfe SA, Lewkowicz AG, Williams M, Hartley IP (2018) Limited release of previously-frozen C and increased new peat formation after thaw in permafrost peatlands. Soil Biology and Biochemistry, 118, 115–129. https://doi.org/10.1016/j.soilbio.2017.12.010
Fuchs M, Grosse G, Strauss J, Günther F, Grigoriev M, Maximov GM, Hugelius G (2018) Carbon and nitrogen pools in thermokarst-affected permafrost landscapes in Arctic Siberia. Biogeosciences, 15, 953–971. https://doi.org/10.5194/bg-15-953-2018
Lara MJ, Nitze I, Grosse G, Martin P, McGuire AD (2018) Reduced arctic tundra productivity linked with landform and climate change interactions. Scientific Reports, 8, 2345. doi:10.1038/s41598-018-20692-8
Schuster PF, Schaefer KM, Aiken GR, Antweiler RC, Dewild JF, Gryziec JD, Gusmeroli A, Hugelius G, Jafarov E, Krabbenhoft DP, Liu L, Herman-Mercer N, Mu C, Roth DA, Schaefer T, Striegl RG, Wickland KP, Zhang T (2018) Permafrost Stores a Globally Significant Amount of Mercury. Geophysical Research Letters. doi: 10.1002/2017GL075571
Wild B, Alves RJE, Bárta J, Čapek P, Gentsch N, Guggenberger G, Hugelius G, Knoltsch A, Kuhry P, Lashchinksiy N, Mikutta R, Palmtag J, Prommer J, Schnecker J, Shibistova O, Takriti M, Urich T, Richter A (2018) Amino acid production exceeds plant nitrogen demand in Siberian tundra. Environmental Research Letters, 13, 34002. https://doi.org/10.1088/1748-9326/aaa4fa
2017
Matamala R, Calderón FJ, Jastrow JD, Fan Z, Hofmann SM, Michaelson GJ, Mishra U, Ping C-L (2017) Influence of site and soil properties on the DRIFT spectra of northern cold-region soils. Geoderma, 305, 80–91. https://doi.org/10.1016/j.geoderma.2017.05.014
Parazoo NC, Koven CD, Lawrence DM, Romanovsky V, Miller CE (2018) Detecting the permafrost carbon feedback: talik formation and increased cold-season respiration as precursors to sink-to-source transitions. The Cryosphere, 12, 123–144. https://doi.org/10.5194/tc-12-123-2018
Virkkala A-M, Virtanen T, Lehtonen A, Rinne J, Luoto M (2017) The current state of CO2 flux chamber studies in the Arctic tundra: a review. Progress in Physical Geography, 309133317745784. https://doi.org/10.1177/0309133317745784
Andresen CG, Lara MJ, Tweedie CE, Lougheed VL (2017) Rising plant-mediated methane emissions from arctic wetlands. Global Change Biology, 23, 1128-1139. doi:10.1111/gcb.13469
Mauritz M, Bracho R, Celis G, Hutchings J, Natali SM, Pegoraro E, Salmon VG, Schädel C, Webb EE, Schuur EAG (2017) Non-linear CO2 flux response to seven years of experimentally induced permafrost thaw. Global Change Biology. doi:10.1111/gcb.13661
Ruppel CD, Kessler JD (2017) The interaction of climate change and methane hydrates.Reviews of Geophysics. doi:10.1002/2016RG000534
Vitharana UWA, Mishra U, Jastrow JD, Matamala R, Fan Z (2017) Observational needs for estimating Alaskan soil carbon stocks under current and future climate. Journal of Geophysical Research: Biogeosciences. doi:10.1002/2016JG003421
Wilson RM, Fitzhugh L, Whiting GJ, Frolking S, Harrison MD, Dimova N, Burnett WC, Chanton JP (2017) Greenhouse gas balance over thaw-freeze cycles in discontinuous zone permafrost. Journal of Geophysical Research: Biogeosciences. doi:10.1002/2016JG003600
2016
Abbott BW, Jones JBJ, Schuur EAG, Chapin FSI, Bowden WB, Bret-Harte MS, Epstein HE, Flannigan MD, Harms TK, Hollingsworth TN, Mack MC, McGuire AD, Natali S, M., Rocha AV, Tank SE, Turetsky M, R., Vonk JE, Wickland KP, Aiken GR, Alexander HD, Amon RMW, Bensoter BW, Bergeron Y, Bishop K, Blarquez O, Bond-Lamberty B, Breen AL, Buffam I, Cai Y, Carcaillet C, Carey SK, Chen JM, Chen HYH, Christensen TR, Cooper LW, Cornelissen JHC, de Groot WJ, DeLuca TH, Dorrepaal E, Fetcher N, Finlay JC, Forbes BC, French NHF, Gauthier S, Girardin MP, Goetz SJ, Goldammer JG, Gouch L, Grogan P, Guo L, Higuera PE, Hinzman L, Hu FS, Hugelius G, Jafarov EE, Jandt R, Johnstone JF, Karlsson J, Kasischke ES, Kattner G, Kelly R, Keuper F, Kling GW, Kortelainen P, Kouki J, Kuhry P, Laudon H, Laurion I, Macdonald RW, Mann PJ, Martikainen PJ, McClelland JW, Molau U, Oberbauer SF, Olefeldt D, Paré D, Parisien M-A, Payette S, Peng C, Pokrovksy OS, Rastetter EB, Raymond PA, Raynolds MK, Rein G, Reynolds JF, Robard M, Rogers BM, Schädel C, Schaefer K, Schmidt IK, Shvidenko A, Sky J, Spencer RGM, Starr G, Striegl RG, Teisserenc R, Tranvik LJ, Virtanen T, Welker JM, Zimov S (2016) Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment. Environmental Research Letters, 11, 034014. http://dx.doi.org/10.1088/1748-9326/11/3/034014
Beer C (2016) Permafrost Sub-grid Heterogeneity of Soil Properties Key for 3-D Soil Processes and Future Climate Projections. Frontiers in Earth Science, 4. doi:10.3389/feart.2016.00081
Blanc-Betes E, Welker JM, Sturchio NC, Chanton JP, Gonzalez-Meler MA (2016) Winter precipitation and snow accumulation drive the methane sink or source strength of Arctic tussock tundra. Global Change Biology, 22, 2818-2833. doi:10.1111/gcb.13242
Bracho R, Natali S, Pegoraro E, Crummer KG, Schädel C, Celis G, Hale L, Wu L, Yin H, Tiedje JM, Konstantinidis KT, Luo Y, Zhou J, Schuur EAG (2016) Temperature sensitivity of organic matter decomposition of permafrost-region soils during laboratory incubations. Soil Biology and Biochemistry, 97, 1-14. doi:10.1016/j.soilbio.2016.02.008
Chen L, Liang J, Qin S, Liu L, Fang K, Xu Y, Ding J, Li F, Luo Y, Yang Y (2016) Determinants of carbon release from the active layer and permafrost deposits on the Tibetan Plateau. Nature Communications, 7, 13046. doi:10.1038/ncomms13046
Crichton KA, Bouttes N, Roche DM, Chappellaz J, Krinner G (2016) Permafrost carbon as a missing link to explain CO2 changes during the last deglaciation. Nature Geosci, 9, 683-686. doi:10.1038/ngeo2793
Ding J, Li F, Yang G, Chen L, Zhang B, Liu L, Fang K, Qin S, Chen Y, Peng Y, Ji C, He H, Smith P, Yang Y (2016) The permafrost carbon inventory on the Tibetan Plateau: a new evaluation using deep sediment cores. Global Change Biology. doi:10.1111/gcb.13257
Finger RA, Turetsky MR, Kielland K, Ruess RW, Mack MC, Euskirchen ES (2016) Effects of permafrost thaw on nitrogen availability and plant-soil interactions in a boreal Alaskan lowland. Journal of Ecology. doi:10.1111/1365-2745.12639
Grosse G, Goetz SJ, McGuire AD, Romanovsky VE, Schuur EAG (2016) Changing permafrost in a warming world and feedbacks to the Earth system. Environmental Research Letters, 11, 040201. http://dx.doi.org/10.1088/1748-9326/11/4/040201
Hagemann S, Blome T, Ekici A, Beer C (2016) Soil-frost-enabled soil-moisture–precipitation feedback over northern high latitudes. Earth Syst. Dynam., 7, 611-625. doi:10.5194/esd-7-611-2016
Harp DR, Atchley AL, Painter SL, Coon ET, Wilson CJ, Romanovsky VE, Rowland JC (2016) Effect of soil property uncertainties on permafrost thaw projections: a calibration-constrained analysis. The Cryosphere, 10, 341-358. doi:10.5194/tc-10-341-2016
Hicks Pries CE, Schuur EAG, Natali SM, Crummer KG (2016) Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra. Nature Clim. Change, 6, 214-218. doi:10.1038/nclimate2830
Jafarov E, Schaefer K (2016) The importance of a surface organic layer in simulating permafrost thermal and carbon dynamics. The Cryosphere,10, 465-475. doi:10.5194/tc-10-465-2016
Jones MC, Harden J, O'Donnell J, Manies K, Jorgenson T, Treat C, Ewing S (2016) Rapid carbon loss and slow recovery following permafrost thaw in boreal peatlands. Global Change Biology. doi:10.1111/gcb.13403
Kim Y, Park S-J, Lee B-Y, Risk D (2016) Continuous measurement of soil carbon efflux with Forced Diffusion (FD) chambers in a tundra ecosystem of Alaska. Science of the Total Environment, 566–567, 175-184. doi:10.1016/j.scitotenv.2016.05.052
Kwon MJ, Heimann M, Kolle O, Luus KA, Schuur EAG, Zimov N, Zimov SA, Göckede M (2016) Long-term drainage reduces CO2 uptake and increases CO2 emission on a Siberian floodplain due to shifts in vegetation community and soil thermal characteristics. Biogeosciences, 13, 4219-4235. doi:10.5194/bg-13-4219-2016
Kwon MJ, Beulig F, Ilie I, Wildner M, Küsel K, Merbold L, Mahecha MD, Zimov N, Zimov SA, Heimann M, Schuur EAG, Kostka JE, Kolle O, Hilke I, Göckede M (2016) Plants, microorganisms, and soil temperatures contribute to a decrease in methane fluxes on a drained Arctic floodplain. Global Change Biology. doi:10.1111/gcb.13558
Loranty MM, Lieberman-Cribbin W, Berner LT, Natali SM, Goetz SJ, Alexander HD, Kholodov AL (2016) Spatial variation in vegetation productivity trends, fire disturbance, and soil carbon across arctic-boreal permafrost ecosystems. Environmental Research Letters, 11, 095008. http://dx.doi.org/10.1088/1748-9326/11/9/095008
McGuire AD, Koven C, Lawrence DM, Clein JS, Xia J, Beer C, Burke E, Chen G, Chen X, Delire C, Jafarov E, MacDougall AH, Marchenko S, Nicolsky D, Peng S, Rinke A, Saito K, Zhang W, Alkama R, Bohn TJ, Ciais P, Decharme B, Ekici A, Gouttevin I, Hajima T, Hayes DJ, Ji D, Krinner G, Lettenmaier DP, Luo Y, Miller PA, Moore JC, Romanovsky V, Schädel C, Schaefer K, Schuur EAG, Smith B, Sueyoshi T, Zhuang Q (2016) Variability in the sensitivity among model simulations of permafrost and carbon dynamics in the permafrost region between 1960 and 2009. Global Biogeochemical Cycles. doi:10.1002/2016GB005405
Miller SM, Miller CE, Commane R, Chang RYW, Dinardo SJ, Henderson JM, Karion A, Lindaas J, Melton JR, Miller JB, Sweeney C, Wofsy SC, Michalak AM (2016) A multiyear estimate of methane fluxes in Alaska from CARVE atmospheric observations. Global Biogeochemical Cycles. doi:10.1002/2016GB005419
Mu C, Zhang T, Zhang X, Li L, Guo H, Zhao Q, Cao L, Wu Q, Cheng G (2016) Carbon loss and chemical changes from permafrost collapse in the northern Tibetan Plateau. Journal of Geophysical Research: Biogeosciences, 121, 1781-1791. doi:10.1002/2015JG003235
O'Donnell JA, Aiken GR, Butler KD, Guillemette F, Podgorski DC, Spencer RGM (2016a) DOM composition and transformation in boreal forest soils: The effects of temperature and organic-horizon decomposition state. Journal of Geophysical Research: Biogeosciences, 121, 2727-2744. doi:10.1002/2016JG003431
O'Donnell JA, Aiken GR, Swanson DK, Panda S, Butler KD, Baltensperger AP (2016b) Dissolved organic matter composition of Arctic rivers: linking permafrost and parent material to riverine carbon. Global Biogeochemical Cycles, doi:10.1002/2016GB005482
Olefeldt D, Goswami S, Grosse G, Hayes D, Hugelius G, Kuhry P, McGuire AD, Romanovsky VE, Sannel ABK, Schuur EAG, Turetsky MR (2016) Circumpolar distribution and carbon storage of thermokarst landscapes. Nature Communications, 7, 13043. doi:10.1038/ncomms13043
Parazoo NC, Commane R, Wofsy SC, Koven CD, Sweeney C, Lawrence DM, Lindaas J, Chang RY-W, Miller CE (2016) Detecting regional patterns of changing CO2 flux in Alaska. Proceedings of the National Academy of Sciences, 113, 7733-7738. doi:10.1073/pnas.1601085113
Peng S, Ciais P, Krinner G, Wang T, Gouttevin I, McGuire AD, Lawrence D, Burke E, Chen X, Decharme B, Koven C, MacDougall A, Rinke A, Saito K, Zhang W, Alkama R, Bohn TJ, Delire C, Hajima T, Ji D, Lettenmaier DP, Miller PA, Moore JC, Smith B, Sueyoshi T (2016) Simulated high-latitude soil thermal dynamics during the past 4 decades. The Cryosphere, 10, 179-192. doi:10.5194/tc-10-179-2016
Salmon VG, Soucy P, Mauritz M, Celis G, Natali SM, Mack MC, Schuur EAG (2016) Nitrogen availability increases in a tundra ecosystem during five years of experimental permafrost thaw. Global Change Biology. doi: 10.1111/gcb.13204
Schädel C, Bader MKF, Schuur EAG, Biasi C, Bracho R, Čapek P, De Baets S, Diáková K, Ernakovich J, Estop-Aragones C, Graham DE, Hartley IP, Iversen CM, Kane E, Knoblauch C, Lupascu M, Martikainen PJ, Natali SM, Norby RJ, O/'Donnell JA, Chowdhury TR, Šantrůčková H, Shaver G, Sloan VL, Treat CC, Turetsky MR, Waldrop MP, Wickland KP (2016) Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils. Nature Clim. Change, 6, 950-953. doi:10.1038/nclimate3054
Schaefer K, Jafarov E (2016) A parameterization of respiration in frozen soils based on substrate availability. Biogeosciences, 13, 1991-2001. doi:10.5194/bg-13-1991-2016
Schuur EAG & Hugelius G(2016) Terrestrial Carbon Cycle. Arctic Report Card 2016. http://www.arctic.noaa.gov/Report-Card/Report-Card-2016/ArtMID/5022/Art…
Tanski G, Couture N, Lantuit H, Eulenburg A, Fritz M (2016) Eroding permafrost coasts release low amounts of dissolved organic carbon (DOC) from ground ice into the nearshore zone of the Arctic Ocean. Global Biogeochemical Cycles, 30, 1054-1068. doi:10.1002/2015GB005337
Treat CC, Wollheim W, M., Varner R, K., Bowden W, B. (2016) Longer thaw seasons increase nitrogen availability for leaching during fall in tundra soils. Environmental Research Letters, 11, 064013. http://dx.doi.org/10.1088/1748-9326/11/6/064013
Wang W, Rinke A, Moore JC, Cui X, Ji D, Li Q, Zhang N, Wang C, Zhang S, Lawrence DM, McGuire AD, Zhang W, Delire C, Koven C, Saito K, MacDougall A, Burke E, Decharme B (2016a) Diagnostic and model dependent uncertainty of simulated Tibetan permafrost area. The Cryosphere, 10, 287-306. doi:10.5194/tc-10-287-2016
Wang W, Rinke A, Moore JC, Ji D, Cui X, Peng S, Lawrence DM, McGuire AD, Burke EJ, Chen X, Decharme B, Koven C, MacDougall A, Saito K, Zhang W, Alkama R, Bohn TJ, Ciais P, Delire C, Gouttevin I, Hajima T, Krinner G, Lettenmaier DP, Miller PA, Smith B, Sueyoshi T, Sherstiukov AB (2016) Evaluation of air–soil temperature relationships simulated by land surface models during winter across the permafrost region. The Cryosphere, 10, 1721-1737. doi:10.5194/tc-10-1721-2016
Walter Anthony K, Daanen R, Anthony P, Schneider von Deimling T, Ping C-L, Chanton JP, Grosse G (2016) Methane emissions proportional to permafrost carbon thawed in Arctic lakes since the 1950s. Nature Geosci, advance online publication. doi:10.1038/ngeo2795
Webb EE, Schuur EAG, Natali SM, Oken KL, Bracho R, Krapek JP, Risk D, Nickerson NR (2016) Increased wintertime CO2 loss as a result of sustained tundra warming. Journal of Geophysical Research: Biogeosciences. doi:10.1002/2014JG002795
Wild B, Gentsch N, Čapek P, Diáková K, Alves RJE, Bárta J, Gittel A, Hugelius G, Knoltsch A, Kuhry P, Lashchinskiy N, Mikutta R, Palmtag J, Schleper C, Schnecker J, Shibistova O, Takriti M, Torsvik VL, Urich T, Watzka M, Šantrůčková H, Guggenberger G, Richter A (2016) Plant-derived compounds stimulate the decomposition of organic matter in arctic permafrost soils. Scientific Reports, 6, 25607. doi:10.1038/srep25607
Wik M, Varner RK, Anthony KW, MacIntyre S, Bastviken D (2016) Climate-sensitive northern lakes and ponds are critical components of methane release. Nature Geosci,doi:10.1038/ngeo2578
Xue K, M Yuan M, J Shi Z, Qin Y, Deng Y, Cheng L, Wu L, He Z, Van Nostrand JD, Bracho R, Natali S, Schuur EAG, Luo C, Konstantinidis KT, Wang Q, Cole JR, Tiedje JM, Luo Y, Zhou J (2016) Tundra soil carbon is vulnerable to rapid microbial decomposition under climate warming.Nature Clim. Change, advance online publication
Yang Z, Wullschleger SD, Liang L, Graham DE, Gu B (2016) Effects of warming on the degradation and production of low-molecular-weight labile organic carbon in an Arctic tundra soil. Soil Biology and Biochemistry, 95, 202-211. doi:10.1016/j.soilbio.2015.12.022
Zhu D, Peng S, Ciais P, Zech R, Krinner G, Zimov S, Grosse G (2016) Simulating soil organic carbon in yedoma deposits during the Last Glacial Maximum in a land surface model. Geophysical Research Letters, 43, 5133-5142. doi:10.1002/2016GL068874
2015
Abbott BW, Jones JB (2015) Permafrost collapse alters soil carbon stocks, respiration, CH4, and N2O in upland tundra. Global Change Biology. doi: 10.1111/gcb.13069
Abbott BW, Jones JB, Godsey SE, Larouche JR, Bowden WB (2015) Patterns and persistence of hydrologic carbon and nutrient export from collapsing upland permafrost. Biogeosciences, 12, 3725-3740. doi:10.5194/bg-12-3725-2015
Bohn TJ, Melton JR, Ito A, Kleinen T, Spahni R, Stocker BD, Zhang B, Zhu X, Schroeder R, Glagolev MV, Maksyutov S, Brovkin V, Chen G, Denisov SN, Eliseev AV, Gallego-Sala A, McDonald KC, Rawlins MA, Riley WJ, Subin ZM, Tian H, Zhuang Q, Kaplan JO (2015) WETCHIMP-WSL: intercomparison of wetland methane emissions models over West Siberia. Biogeosciences, 12, 3321-3349. doi:10.5194/bg-12-3321-2015
Čapek P, Diáková K, Dickopp J-E, Bárta J, Wild B, Schnecker J, Alves RJE, Aiglsdorfer S, Guggenberger G, Gentsch N, Hugelius G, Lashchinsky N, Gittel A, Schleper C, Mikutta R, Palmtag J, Shibistova O, Urich T, Richter A, Šantrůčková H (2015) The effect of warming on the vulnerability of subducted organic carbon in arctic soils. Soil Biology and Biochemistry, 90, 19-29. doi:10.1016/j.soilbio.2015.07.013
Drake TW, Wickland KP, Spencer RGM, McKnight DM, Striegl RG (2015) Ancient low–molecular-weight organic acids in permafrost fuel rapid carbon dioxide production upon thaw. Proceedings of the National Academy of Sciences. doi: 10.1073/pnas.1511705112
Ernakovich JG, Wallenstein MD (2015) Permafrost microbial community traits and functional diversity indicate low activity at in situ thaw temperatures. Soil Biology & Biochemistry, 87, 78-89. doi:10.1016/j.soilbio.2015.04.009
Feng X, Gustafsson Ö, Holmes RM, Vonk JE, van Dongen BE, Semiletov IP, Dudarev OV, Yunker MB, Macdonald RW, Wacker L, Montluçon DB, Eglinton TI (2015) Multimolecular tracers of terrestrial carbon transfer across the pan-Arctic: 14C characteristics of sedimentary carbon components and their environmental controls. Global Biogeochemical Cycles. doi: 10.1002/2015GB005204
Hicks Pries CE, van Logtestijn RSP, Schuur EAG, Natali SM, Cornelissen JHC, Aerts R, Dorrepaal E (2015b) Decadal warming causes a consistent and persistent shift from heterotrophic to autotrophic respiration in contrasting permafrost ecosystems. Global Change Biology, 21, 4508-4519. doi: 10.1111/gcb.13032
Hollesen J, Matthiesen H, Møller AB, Elberling B (2015) Permafrost thawing in organic Arctic soils accelerated by ground heat production. Nature Clim. Change. doi:10.1038/nclimate2590
Hope C, Schaefer K (2015) Economic impacts of carbon dioxide and methane released from thawing permafrost. Nature Clim. Change,doi:10.1038/nclimate2807
Jones BM, Grosse G, Arp CD, Miller E, Liu L, Hayes DJ, Larsen CF (2015) Recent Arctic tundra fire initiates widespread thermokarst development. Scientific Reports, 5, 15865. doi: 10.1038/srep15865
Juncher Jørgensen C, Lund Johansen KM, Westergaard-Nielsen A, Elberling B (2015) Net regional methane sink in High Arctic soils of northeast Greenland. Nature Geosci, 8, 20-23. doi:10.1038/ngeo2305
Kim Y (2015) Effect of thaw depth on fluxes of CO2 and CH4 in manipulated Arctic coastal tundra of Barrow, Alaska. Science of the Total Environment, 505, 0. 385-389, doi:http://dx.doi.org/10.1016/j.scitotenv.2014.09.046
Knoblauch C, Spott O, Evgrafova S, Kutzbach L, Pfeiffer E-M (2015) Regulation of methane production, oxidation, and emission by vascular plants and bryophytes in ponds of the northeast Siberian polygonal tundra. Journal of Geophysical Research: Biogeosciences, 120, 2525-2541. doi:10.1002/ 2015JG003053
Koven CD, Lawrence DM, Riley WJ (2015) Permafrost carbon−climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics. Proceedings of the National Academy of Sciences. doi:10.1073/pnas.1415123112
Koven CD, Schuur EAG, Schädel C, Bohn TJ, Burke EJ, Chen G, Chen X, Ciais P, Grosse G, Harden JW, Hayes DJ, Hugelius G, Jafarov EE, Krinner G, Kuhry P, Lawrence DM, Macdougall AH, Marchenko SS, Mcguire AD, Natali SM, Nicolsky DJ, Olefeldt D, Peng S, Romanovsky VE, Schaefer KM, Strauss J, Treat CC, Turetsky M (2015) A simplified, data-constrained approach to estimate the permafrost carbon–climate feedback. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 373, DOI: 10.1098/rsta.2014.0423
Larouche JR, Abbott BW, Bowden WB, Jones JB (2015) The role of watershed characteristics, permafrost thaw, and wildfire on dissolved organic carbon biodegradability and water chemistry in Arctic headwater streams. Biogeosciences, 12, 4221-4233. doi:10.5194/bg-12-4221-2015
Lawrence DM, Koven CD, Swenson SC, Riley WJ, Slater AG (2015) Permafrost thaw and resulting soil moisture changes regulate projected high-latitude CO2 and CH4 emissions. Environmental Research Letters, 10, 094011. http://dx.doi.org/10.1088/1748-9326/10/9/094011
Mann PJ, Eglinton TI, Mcintyre CP, Zimov N, Davydova A, Vonk JE, Holmes RM, Spencer RGM (2015) Utilization of ancient permafrost carbon in headwaters of Arctic fluvial networks. Nat Commun, 6. doi:10.1038/ncomms8856
Natali SM, Schuur EaG, Mauritz M, Schade JD, Celis G, Crummer KG, Johnston C, Krapek J, Pegoraro E, Salmon VG, Webb EE (2015) Permafrost thaw and soil moisture driving CO2 and CH4 release from upland tundra. Journal of Geophysical Research: Biogeosciences, 120, 525-537. doi:10.1002/2014JG002872
Overduin PP , Liebner S, Knoblauch C, Günther F, Wetterich S, Schirrmeister L, Hubberten H-W, Grigoriev MN (2015) Methane oxidation following submarine permafrost degradation: Measurements from a central Laptev Sea shelf borehole. Journal of Geophysical Research: Biogeosciences, 120, 965-978. doi: 10.1002/2014JG002862
Ping CL, Jastrow JD, Jorgenson MT, Michaelson GJ, Shur YL (2015) Permafrost soils and carbon cycling. SOIL, 1, 147-171. doi:10.5194/soil-1-147-2015
Rawlins MA, Mcguire AD, Kimball JS, Dass P, Lawrence D, Burke E, Chen X, Delire C, Koven C, Macdougall A, Peng S, Rinke A, Saito K, Zhang W, Alkama R, Bohn TJ, Ciais P, Decharme B, Gouttevin I, Hajima T, Ji D, Krinner G, Lettenmaier DP, Miller P, Moore JC, Smith B, Sueyoshi T (2015) Assessment of model estimates of land-atmosphere CO2 exchange across Northern Eurasia. Biogeosciences, 12, 4385-4405. doi:10.5194/bg-12-4385-2015
Roy Chowdhury T, Herndon EM, Phelps TJ, Elias DA, Gu B, Liang L, Wullschleger SD, Graham DE (2015) Stoichiometry and temperature sensitivity of methanogenesis and CO2 production from saturated polygonal tundra in Barrow, Alaska. Global Change Biology, 21, 722-737. doi: 10.1111/gcb.12762
Sannel ABK, Hugelius G, Jansson P, Kuhry P (2015) Permafrost Warming in a Subarctic Peatland – Which Meteorological Controls are Most Important? Permafrost and Periglacial Processes. doi: 10.1002/ppp.1862
Salvadó JA, Tesi T, Andersson A, Ingri J, Dudarev OV, Semiletov IP, Gustafsson Ö (2015) Organic carbon remobilized from thawing permafrost is resequestered by reactive iron on the Eurasian Arctic Shelf. Geophysical Research Letters, 42, 8122-8130. doi: 10.1002/2015GL066058
Shakhova N , Semiletov I, Sergienko V, Lobkovsky L, Yusupov V, Salyuk A, Salomatin A, Chernykh D, Kosmach D, Panteleev G, Nicolsky D, Samarkin V, Joye S, Charkin A, Dudarev O, Meluzov A, Gustafsson O (2015) The East Siberian Arctic Shelf: towards further assessment of permafrost-related methane fluxes and role of sea ice. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 373. doi: 10.1098/rsta.2014.0451
Schuur, EAG, McGuire AD, Schädel C, Grosse G., Harden JW, Hayes DJ, Hugelius G, Koven CD, Kuhry P, Lawrence DM, Natali SM, Olefeldt C, Romanovsky VE, Schaefer K, Turetsky MR, Treat CC and Vonk JE (2015). Climate change and the permafrost carbon feedback. Nature 520 (7546): 171-179. doi:10.1038/nature14338
Siewert MB, Hanisch J, Weiss N, Kuhry P, Maximov TC, Hugelius G (2015) Comparing carbon storage of Siberian tundra and taiga permafrost ecosystems at very high spatial resolution. Journal of Geophysical Research: Biogeosciences, 120, 1973-1994. DOI: 10.1002/2015JG002999
Strauss J, Schirrmeister L, Mangelsdorf K, Eichhorn L, Wetterich S, Herzschuh U (2015) Organic-matter quality of deep permafrost carbon – a study from Arctic Siberia. Biogeosciences, 12, 2227-2245. doi:10.5194/bg-12-2227-2015
Treat C, Natali SM, Ernakovich J, Iversen CM, Lupascu M, McGuire AD, Norby RJ, Roy Chowdhury T, Richter A, Šantrůčková H, Schädel C, Schuur EAG, Sloan VL, Turetsky MR, Waldrop MP (2015) A pan-Arctic synthesis of CH4 and CO2 production from anoxic soil incubations. Global Change Biology. doi:10.1111/gcb.12875
Vonk JE, Tank SE, Bowden WB, Laurion I, Vincent WF, Alekseychik P, Amyot M, Billet MF, Canário J, Cory RM, Deshpande BN, Helbig M, Jammet M, Karlsson J, Larouche J, MacMillan G, Rautio M, Walter Anthony KM, Wickland KP (2015) Reviews and syntheses: Effects of permafrost thaw on Arctic aquatic ecosystems. Biogeosciences, 12, 7129-7167. doi: 10.5194/bg-12-7129-2015
2014
Abbott BW, Larouche JR, Jones JB, Bowden WB, Balser AW (2014) Elevated dissolved organic carbon biodegradability from thawing and collapsing permafrost. Journal of Geophysical Research: Biogeosciences, 119, 2014JG002678.
Chang RY-W, Miller CE, Dinardo SJ et al. (2014) Methane emissions from Alaska in 2012 from CARVE airborne observations. Proceedings of the National Academy of Sciences. 10.1073/pnas.1412953111
Christensen RT (2014) Climate science: Understand Arctic methane variability. Nature 509, 279-281, doi:10.1038/509279a
Christiansen J, Romero A, Jørgensen NG, Glaring M, Jørgensen C, Berg L, Elberling B (2014) Methane fluxes and the functional groups of methanotrophs and methanogens in a young Arctic landscape on Disko Island, West Greenland. Biogeochemistry, 1-19, doi: 10.1007/s10533-014-0026-7
Deng J, Li C, Frolking S, Zhang Y, Bäckstrand K, Crill P (2014) Assessing effects of permafrost thaw on C fluxes based on multiyear modeling across a permafrost thaw gradient at Stordalen, Sweden. Biogeosciences, 11, 4753-4770
Hayes, DJ, Kicklighter DW, McGuire AD, Chen M, Zhuang Q, Yuan F, Melillo JM, and Wullschleger SD (2014) The impacts of recent permafrost thaw on land-atmosphere greenhouse gas exchange, Environmental Research Letters, 9, 045005, doi:10.1088/1748-9326/9/4/045005
Hodgkins SB, Tfaily MM, McCalley CK, Logan TA, Crill PM, Saleska SR, Rich VI, Chanton JP (2014) Changes in peat chemistry associated with permafrost thaw increase greenhouse gas production. Proceedings of the National Academy of Sciences, doi:10.1073/pnas.1314641111
Hugelius G, Strauss J, Zubrzycki S et al. (2014) Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences, 11, 6573-6593. doi:10.5194/bg-11-6573-2014
Lee H, Swenson SC, Slater AG, Lawrence DM (2014) Effects of excess ground ice on projections of permafrost in a warming climate. Environmental Research Letters, 9, 124006. doi:10.1088/1748-9326/9/12/124006
Li J, Luo Y, Natali S, Schuur EAG, Xia J, Kowalczyk E, Wang Y (2014) Modeling permafrost thaw and ecosystem carbon cycle under annual and seasonal warming at an Arctic tundra site in Alaska. Journal of Geophysical Research: Biogeosciences, 119, 2013JG002569.
Lupascu M, Welker JM, Seibt U, Maseyk K, Xu X, Czimczik CI (2014) High Arctic wetting reduces permafrost carbon feedbacks to climate warming. Nature Clim. Change, 4, 1. 51-55, doi: 10.1038/nclimate2058
Lupascu M, Welker JM, Xu X, Czimczik CI (2014) Rates and radiocarbon content of summer ecosystem respiration in response to long-term deeper snow in the High Arctic of NW Greenland. Journal of Geophysical Research: Biogeosciences, 119, 2013JG002494.
McCalley CK, Woodcroft BJ, Hodgkins SB, Wehr RA, Kim E-H, Mondav R, Crill PM, Chanton JP, Rich VI, Tyson GW, Saleska SR (2014) Methane dynamics regulated by microbial community response to permafrost thaw. Nature, 514, 7523. 478-481, doi: 10.1038/nature13798
Mondav R, Woodcroft BJ, Kim E-H, McCalley CK, Hodgkins SB, Crill PM, Chanton J, Hurst GB, VerBerkmoes NC, Saleska SR, Hugenholtz P, Rich VI, Tyson GW (2014) Discovery of a novel methanogen prevalent in thawing permafrost. Nat Commun, 5, doi: 10.1038/ncomms4212
Natali SM, Schuur EAG, Webb EE, Pries CEH, Crummer KG (2014) Permafrost degradation stimulates carbon loss from experimentally warmed tundra. Ecology, 95, 602-608. doi:10.1890/13-0602.1
O'Donnell JA, Aiken GR, Walvoord MA, Raymond PA, Butler KD, Dornblaser MM, Heckman K (2014) Using dissolved organic matter age and composition to detect permafrost thaw in boreal watersheds of interior Alaska. Journal of Geophysical Research: Biogeosciences, 2014JG002695.
Olefeldt, D. & Roulet, N. T. Permafrost conditions in peatlands regulate magnitude, timing, and chemical composition of catchment dissolved organic carbon export. Global Change Biology 20, 3122-3136, (2014). doi: 10.1111/gcb.12607
Schädel C, Schuur EAG, Bracho R et al.(2014) Circumpolar assessment of permafrost C quality and its vulnerability over time using long-term incubation data. Global Change Biology, 20, 641-652. doi: 10.1111/gcb.12417
Schaefer K, Lantuit H, Romanovsky VE, Schuur EAG, Witt R (2014) The impact of the permafrost carbon feedback on global climate. Environmental Research Letters, 9, 085003. doi:10.1088/1748-9326/9/8/085003
Treat CC, Wollheim WM, Varner RK, Grandy AS, Talbot J, Frolking S (2014) Temperature and peat type control CO2 and CH4 production in Alaskan permafrost peats. Global Change Biology, 20, 2674-2686, doi: 10.1111/gcb.12572
Walter Anthony KM, Zimov SA, Grosse G et al. (2014) A shift of thermokarst lakes from carbon sources to sinks during the Holocene epoch. Nature, 511, 452-456. doi:10.1038/nature13560
Wik M, Thornton BF, Bastviken D, MacIntyre S, Varner RK, Crill PM (2014) Energy input is primary controller of methane bubbling in subarctic lakes. Geophysical Research Letters, 41, 2013GL058510
Wild B, Schnecker J, Alves RJE, Barsukov P, Bárta J, Čapek P, Gentsch N, Gittel A, Guggenberger G, Lashchinskiy N, Mikutta R, Rusalimova O, Šantrůčková H, Shibistova O, Urich T, Watzka M, Zrazhevskaya G, Richter A (2014) Input of easily available organic C and N stimulates microbial decomposition of soil organic matter in arctic permafrost soil. Soil Biology and Biochemistry, 75, 0. 143-151, doi:http://dx.doi.org/10.1016/j.soilbio.2014.04.014